Extensions 1→N→G→Q→1 with N=C42 and Q=C3xD5

Direct product G=NxQ with N=C42 and Q=C3xD5
dρLabelID
D5xC4xC12240D5xC4xC12480,664

Semidirect products G=N:Q with N=C42 and Q=C3xD5
extensionφ:Q→Aut NdρLabelID
C42:1(C3xD5) = (C4xC20):C6φ: C3xD5/C5C6 ⊆ Aut C42806C4^2:1(C3xD5)480,263
C42:2(C3xD5) = C20:4D4:C3φ: C3xD5/C5C6 ⊆ Aut C42606+C4^2:2(C3xD5)480,262
C42:3(C3xD5) = D5xC42:C3φ: C3xD5/D5C3 ⊆ Aut C42606C4^2:3(C3xD5)480,264
C42:4(C3xD5) = C3xC42:D5φ: C3xD5/C15C2 ⊆ Aut C42240C4^2:4(C3xD5)480,665
C42:5(C3xD5) = C3xC42:2D5φ: C3xD5/C15C2 ⊆ Aut C42240C4^2:5(C3xD5)480,669
C42:6(C3xD5) = C3xD20:4C4φ: C3xD5/C15C2 ⊆ Aut C421202C4^2:6(C3xD5)480,83
C42:7(C3xD5) = C12xD20φ: C3xD5/C15C2 ⊆ Aut C42240C4^2:7(C3xD5)480,666
C42:8(C3xD5) = C3xC20:4D4φ: C3xD5/C15C2 ⊆ Aut C42240C4^2:8(C3xD5)480,667
C42:9(C3xD5) = C3xC4.D20φ: C3xD5/C15C2 ⊆ Aut C42240C4^2:9(C3xD5)480,668

Non-split extensions G=N.Q with N=C42 and Q=C3xD5
extensionφ:Q→Aut NdρLabelID
C42.1(C3xD5) = C3xC42.D5φ: C3xD5/C15C2 ⊆ Aut C42480C4^2.1(C3xD5)480,81
C42.2(C3xD5) = C3xC20:3C8φ: C3xD5/C15C2 ⊆ Aut C42480C4^2.2(C3xD5)480,82
C42.3(C3xD5) = C12xDic10φ: C3xD5/C15C2 ⊆ Aut C42480C4^2.3(C3xD5)480,661
C42.4(C3xD5) = C3xC20:2Q8φ: C3xD5/C15C2 ⊆ Aut C42480C4^2.4(C3xD5)480,662
C42.5(C3xD5) = C3xC20.6Q8φ: C3xD5/C15C2 ⊆ Aut C42480C4^2.5(C3xD5)480,663
C42.6(C3xD5) = C12xC5:2C8central extension (φ=1)480C4^2.6(C3xD5)480,80

׿
x
:
Z
F
o
wr
Q
<